Received: December 9, 1988; accepted: February 26, 1989

SYNTHESIS OF SF50- SUBSTITUTED FLUOROCARBONS

Carl J. SCHACK, Richard D. WILSON and Karl O. CHRISTE

Rocketdyne, A Division of Rockwell International Canoga Park, CA 91303 (U.S.A.)

SUMMARY

The reactions of SF₅OCl and SF₅OF with fluorinated ethylenes were used to prepare new SF₅O- substituted fluorocarbons in 44-77% yield. Compounds prepared were SF₅OCF₂CFHCl, SF₅OCFClCF₂Cl, and the isomeric mixture SF₅OCFBrCF₂Cl/SF₅OCF₂CFBrCl. Spectroscopic and other characterizing data for the adducts are presented. Numerous attempts to prepare SF₅OCF=CF₂ by dehalogenation of the dichloro or bromochloro materials were unsuccessful.

INTRODUCTION

While SF_5OX additions to olefins, where X=Cl or F, have been known for some time [1-4], these reactions have been limited to symmetrical fluoroolefins or non-fluorinated olefins. With care, all of these reactions produced acceptable yields of the corresponding 1:1 adducts through cleavage of the OX bond.

$$s_{F_5}ox + c = c < \longrightarrow s_{F_5}o - c - c - c - x$$

However, no examples have been reported for unsymmetrical highly fluorinated olefins, in particular those that might furnish suitable products for subsequent conversion to the unknown per-fluorovinyl derivative, $SF_5OCF=CF_2$. It was of interest therefore to examine such additions involving SF_5OX compounds.

0022-1139/89/\$3.50

© Elsevier Sequoia/Printed in The Netherlands

EXPERIMENTAL

Volatile materials were manipulated in a stainless steel vacuum line equipped with Teflon FEP U-traps, 316 stainless steel bellows-seal valves, and a Heise Bourdon tube-type gauge. The synthetic reactions employed here were conducted in stainless steel cylinders or a U-trap on the vacuum line. Infrared spectra were recorded on a Perkin Elmer Model 283 spectrophotometer using cells equipped with AqCl or AqBr windows. Raman spectra were recorded at ambient temperature on a Cary Model 83 spectrophotometer with the use of the 488-nm exciting line of an Ar ion laser. Sealed 3mm OD Quartz tubes were used as sample containers. ¹⁹F NMR spectra were recorded at 84.6 MHz on a Varian Model EM390 spectrometer with internal CFC1, as a standard with a negative chemical shift being upfield from CFCl2. Literature methods were used to prepare SF_5OC1 [5] and SF_5OF [6]. Olefins used were commercial products (SCM Specialty Chemicals).

Reaction of SF50Cl with CF2=CFH

A prepassivated, evacuated cylinder was cooled to -196°C and loaded successively with SF₅OCl (3.95 mmol) and CF₂=CFH (4.51 mmol) from the vacuum line. The cylinder was kept at -60°C for 20 hr. Fractional condensation of the products was carried out using a series of traps cooled at -64, -78, and -196°C. The olefin adduct was retained in the trap at -78°C (1.74 mmol, 44% yield). Identification of the adduct as SF₅OCF₂CFHCl was based on its ¹⁹F and ¹H nmr spectra together with infrared, and Raman spectra. Vapor density; Found 258, calc. 260 g/mol. Vapor pressure-temperature data recorded were (T°C; P_{mm}): -31.7, 11; -24.5, 16; 0.0, 47; 9.8, 70; 23.1, 108. For the range -32 to 23°C log P_{mm} = 6.4314-1300.4/T°K with a calc. b.p. = 93°C and $\Delta H_v = 5.95$ kcal/mol.

284

Reaction of SF50Cl with CF2=CFC1

Sequential additions of SF_5OCl (6.23 mmol) and CF_2 =CFCl (6.86 mmol) were made to a passivated, cold (-196°C) 30 ml stainless steel cylinder attached to the vacuum line. The closed cylinder was then left at -60°C overnight before warming to -20°C for 2 hrs. Fractional condensation of the products in a series of traps cooled to -56, -64 and -196°C resulted in retention of the SF_5O - adduct in the trap cooled to -64°C (3.09 mmol, 50% yield). This adduct was identified as $SF_5OCFClCF_2Cl$ on the basis of its ¹⁹F nmr, infrared, and Raman spectra. Vapor density; Found, 292, calc. 295 g/mol. Vapor pressure-temperature data recorded were (T°C, P_{mm}): -31.9, 7; -23.4, 11; 0.0, 35; 19.5, 78. For the range -32 to 20°C log $P_{mm} \approx 6.8252$ -1443.4/T°K with a calc. b.p. 93°C and $\Delta H_v \approx 6.60$ kcal/mol.

Reaction of SF50Cl with CF2=CFBr

A 10.5 mmol sample of SF_5OCl was maintained at $-78^{\circ}C$ in a U-trap on the vacuum line and CF_2 =CFBr (11.0 mmol) was bled into the trap slowly over 3 hr before the contents were warmed toward room temperature. Separation of the products were carried out by fractional condensation in U-traps cooled, to -31, -78, and $-196^{\circ}C$. The desired adduct was retained in the $-78^{\circ}C$ trap (6.16 mmol, 59% yield) and was identified as a mixture of the isomers $SF_5OCFBrCF_2Cl$ and $SF_5OCF_2CFBrCl$ based on ¹⁹F nmr, infrared and Raman spectra. Vapor density; Found 334, calc. 339 g/mol. Vapor pressuretemperature data for this mixture were recorded (T°C, P_{mm}): -31.9, 3.5; -26.1, 5; 0.0, 21; 10.4, 34; 17.6, 46; 20.7, 54. For the range -32 to 20°C log P_{mm} = 7.1578-1595.4/T°K with a calc. b.p. = 100°C and ΔH_{y} = 7.30 kcal/mol.

Reaction of SF₅OF with ClCF=CFC1

A prepassivated, evacuated, 30 ml cylinder was cooled to -196° C and loaded successively with ClCF=CFCl (3.01 mmol) and SF₅OF (2.14 mmol) from the vacuum line. The cylinder was allowed to warm slowly to -78° C using a liq. N₂-CO₂ slush and then to ambient temperature. After 2d the products were separated by fractional condensation in U-traps cooled to -45, -78, and -196° C. The adduct obtained, SF₅OCFClCF₂Cl, (1.65 mmol, 77% yield) was identical to that prepared using SF₅OC1 and CF₂=CFC1.

RESULTS AND DISCUSSION

 ${\rm SF}_5{\rm OHal}$ was successfully added to highly fluorinated olefins according to:

$$SF_{5}OC1 + CF_{2} = CFH \longrightarrow SF_{5}OCF_{2}CFHC1$$

$$44\% \text{ yield}$$

$$SF_{5}OC1 + CF_{2} = CFC1 \qquad 50\%$$

$$SF_{5}OCF + CICF = CFC1 \qquad 77\%$$

$$SF_{5}OC1 + CF_{2} = CFBr \longrightarrow SF_{5}OCFBrCF_{2}C1 + SF_{5}OCF_{2}CFBrC1 \qquad 59\%$$

$$77\% + 23\% \text{ isomer mixture}$$

These reactions required careful control. For example when CF_2 =CFBr was added fairly rapidly to SF_5OC1 at -78°C, the yield of SF_5OR_f fell significantly. The principal by-products were SF_4O and chloro-fluorinated adducts. All of the SF_5O - substituted fluorocarbons are thermally stable, storable, clear, colorless liquids of moderate volatility.

The observed modes of addition for SF_5OCl are in general agreement with an electrophilic chlorine attacking the olefins as described for the analogous reactions of CF_3OCl [7]. However the finding of one isomeric adduct only in the case of CF_2 =CFCl was surprising since both the above mentioned CF_3OCl gave both isomers [3,4] as did FO_2SOCl [8]. No simple explanation is apparent for this difference.

Table 1 lists the ¹⁹F and ¹H nmr data for the new compounds. The magnetic inequivalence of the axial fluorine compared to the four basal fluorines in the SF₅O group gives rise to AB_4 type spectra. Chemical shifts and coupling constants are typical of those for similar SF₅O- carbon compounds [2,9]. In highly halogenated derivatives the chemical shift of the apical F on sulfur is upfield from that of the basal SF₄ group whereas in the hydrogen containing compound it appears downfield. This is also observed for the chemical shifts of related AB_4 patterns from SeF₅O- [10] and TeF₅O- [11] substituted fluorocarbons. The first order CF and CH parts of the spectra allowed unambiguous determination of the isomer or isomers present and the measurement of the isomer ratio in the latter case.

Vibrational spectral data are given in Table 2. The strong infrared bands in the region 1300-950 cm⁻¹ are characteristic for C-F and C-O stretching motions. For all the SF_5O - compounds intense infrared bands were found at about 930, 880, and 600 cm^{-1} which are attributable to $v_{as}SF_4$, vSF' and $\delta_{s}SF_4$, respectively, of the SF50- group. These assignments correspond closely to those given for other SF_5 - containing molecules [12,13]. Raman counterparts exist for many of these infrared bands, although they are, as expected, of relatively low intensity, especially for the C-F and C-O vibrations. The Raman spectra are generally dominated by a polarized band near 730 $\rm cm^{-1}$ which is assigned to the symmetric SF_A stretching mode, and which has no infrared counterpart. Other tentative assignments appear in Table 2. All of the spectral data agree with the formulation of these compounds shown earlier.

287

 19 F NMR data for $R_{f}OSF_{5}$ compounds

^aCFCl₃ reference, negative shift being upfield from the reference, ϕ = chemical shift, ppm. J=Hz, where b=broad, s=singlet, d=doublet, t=triplet, gi=quintet. The area ratios measured for these resonances agreed with the given assignments.

TABLE 2 Vibrational spectra of R_cOSF_c compounds

	4	t 5 -	-1.	р, , ,		
	SF_00	CF.CFHC1	g., cm (rel SF_OCI	FCICF,C1	SF_OCFBrCF,C1	/SF,OCF,CFBrC1
Assign.b	IR(gas)		IR(gas)	Raman(liq.)	IR(gas)	Raman(liq.)
vCH	2995 vw	3005(0.5)dp				
бСH	, 1360 m	1365(0.3)				
	1270 m	1275(0.3)			1255 vw	
	1252 m	1255(0.4)dp	1245 m	1248(0.5)dp	1235 w	1240(0.3)dp
VCF	< 1175 vs	1175(0.2)	1190 s	1185(0.2)	1185 s	1180(0.1)
		1145(0.4)	1145 sh	L140(0.2)	US 0611	11 0/3611
	1140 vs		1130 s		1130 S	(1.0)2211
0	1105 s	1105(0.4)	lll5 sh	1045(0 4)n	1030 ms	d(2.0)cott 0(2.2)0201
vC0	M CEUT	03000 41	950 VS	955(0.2)	948 VS	950(0.2)
v.c. v.s.f.	57 CF6	915(0.3)	930 VS	915(0.2)	930 vs	925(0.1)
as 4	867 e	865(0.7)n	885 s		890 vs	890(0.3)
6CF_	825 s	825(3.2)p	845 m		813 m	870(0.3)
7		775(3.3)p	785 m	782(0.7)p		775(1.3)p
vSO	755 m	760(4.2)p	758 w	745(1.8)p	735 w	745(4.2)p
v_SF,ip		745(10)p		730(10)p		725(10)p
2 1 -	732 w	730(6.6)	722 m		718 w	
				d(a. 0) c80		655(1,0)
			630 true			635(2.2)p
vsF4op		640(1.2)p 615(0 8)n		615(1.1)p		605(1.1)p
A SF onl	600 ms	605(0.7)dp	600 s	605(0.4)dp	605 s	590(0.5)
3.7.8	575 w	575(0.9)p				
	555 vw	555(0.9)p		547(0.6)p	535 4%	d(c.)25c
		520(0.6)p		525(0.8)dp	WV 005	d(a.v)cic
		485(1.3)p		490(1.2)p		176() ()-
		468(1.2)		4/0(0.8)p		448(4.7)5
		445(2.2)D				
		4 5 U (2 - 8) D 2 8 0 (1 - 0)		d (r · +) 0 + F		372(2.3)p
		355(0.7)p		350(0.8)		350(1.0)
		315(0.7)		310(1.1)		318(3.7)p
				290(0.9)		295(2.9)p
		278(1.4)p		275(2.0)p		275(1.7)p 738/5 0)p
		235(1.9)p		215(1.5)n		215(5.4)p
		185(2,0)5		185(1.5)p		180(1.4)p
				•		165(0.8)p
						145(1.1)dp

^aUncorrected Raman intensities (peak heights) ^bip = in phase; op = out of phase; opl = out of plane

Numerous attempts were made to dehalogenate $SF_5OCFClCF_2Cl$, and also $SF_5OCFBrCF_2Cl$ in its isomer mixture, in order to obtain the unknown $SF_5OCF=CF_2$. Conditions similar to those employed for the analogous reaction of $CF_3OCFClCF_2Cl$ to give $CF_3OCF=CF_2$ [14] were used. Those authors noted that dimethyl sulfoxide was the only successful solvent for the dehalogenation. We were unsuccessful in our efforts using DMSO, diglyme, dioxane, or DMF solvents with Zn powder (activated) or Zn-Cu couple at temperatures up to 140°C. No olefinic material was obtained and increasing degradation of the starting material was noted at higher temperatures and longer reaction times. Ultrasound activation with DMSO/Zn at 45°C gave similar results. In the absence of a solvent these two SF_5OR_f compounds could be heated with Zn to 195°C for 4 days and not be affected.

ACKNOWLEDGEMENTS

The authors are grateful for support of this work by the U.S. Air Force Office of Scientific Research under Contract F49620-85-C-0037 and to Dr. L. R. Grant for helpful discussions.

REFERENCES

- 1 S. M. Williamson and G. H. Cady, Inorg. Chem., 1 (1962) 673.
- 2 R. D. Place and S. M. Williamson, J. Am. Chem. Soc., <u>90</u> (1968) 2550.
- 3 W. Maya, C. J. Schack, R. D. Wilson, and J. S. Muirhead, Tetrahedron Lett., (1969) 3247.
- L. R. Anderson, D. E. Young, D. E. Gould, R. Jurik-Hogan,
 D. Nuechterlein, and W. B. Fox, J. Org. Chem., <u>35</u> (1970) 3730.
- 5 J. K. Ruff and M. Lustig, Inorg. Chem., <u>3</u> (1964) 1422.
- 6 C. J. Schack, R. D. Wilson, J. S. Muirhead, and S. N. Cohz, J. Am. Chem. Soc., 91 (1969) 2907.
- 7 K. K. Johri and D. D. DesMarteau, J. Org. Chem., <u>48</u> (1983) 242.

290

- 8 A. V. Fokin, Yu. N. Studnev, L. D. Kuznetsova, and V. L. Rud, Izv. Akad. Nauk SSSR, Ser. Khim., (1974) 474.
- 9 C. I. Merrill, S. M. Williamson, G. H. Cady, and D. F. Eggers Jr., Inorg. Chem., 1 (1962) 215.
- 10 C. J. Schack and K. O. Christe, J. Fluorine Chem., 39 (1988) 163.
- 11 C. J. Schack and K. O. Christe, J. Fluorine Chem., 27 (1985) 53.
- 12 H. A. Carter and J. M. Shreeve, Spectrochim. Acta, <u>29A</u> (1973) 1321.
- 13 K. O. Christe, E. C. Curtis, and C. J. Schack, Spectrochim. Acta. <u>33A</u> (1977) 69.
- 14 W. S. Durrell, E. C. Stump Jr., G. Westmoreland, and C. D. Padgett, J. Polymer Sci., <u>3A</u> (1965) 4065.